Biodegradable Extremely-Small-Diameter Vascular Graft Made of Silk Fibroin can be Implanted in Mice

Abstract

Aim, Synthetic vascular grafts are widely used in surgical revascularization, mainly for medium- to large-sized vessels. However, synthetic grafts smaller than 6 mm in diameter are associated with a high incidence of thrombosis. In this study, we evaluated silk fibroin, a major protein of silk, with high biocompatibility and biodegradability, as a useful material for extremely-small-diameter vascular grafts. Methods, A small-sized (0.9 mm inner diameter) graft was braided from a silk fibroin thread. The right carotid arteries of 8- to 14-week-old male C57BL/6 mice were cut at the midpoint, and fibroin grafts (5- to 7-mm in length) were transplanted using a cuff technique with polyimide cuffs. The grafts were harvested at different time points and analyzed histologically. Results, CD31+ endothelial cells had already started to proliferate at 2 weeks after implantation. At 4 weeks, neointima had formed with α-smooth muscle actin+ cells, and the luminal surface was covered with CD31+endothelial cells. Mac3+ macrophages were accumulated in the grafts. Graft patency was confirmed at up to 6 months after implantation. Conclusion, This mouse model of arterial graft implantation enables us to analyze the remodeling process and biocompatibility of extremely-small-diameter vascular grafts. Biodegradable silk fibroin might be applicable for further researches using genetically modified mice.

Publication
J Atheroscler Thromb. 2020 Dec 1;27(12):1299-1309
Yasutomi Higashikuni, M.D., Ph.D., FESC
Yasutomi Higashikuni, M.D., Ph.D., FESC
Assistant Professor of Cardiovascular and Genetic Research

My research interests include homeostatic inflammation, RNA metabolism and modification, and synthetic biology.

Related